bookmark

Base 13 to Binary (base 2) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 13 to binary (base 2)
013= 02
113= 12
213= 102
313= 112
413= 1002
513= 1012
613= 1102
713= 1112
813= 10002
913= 10012
a13= 10102
b13= 10112
c13= 11002
1013= 11012
1113= 11102
1213= 11112
1313= 100002
1413= 100012
1513= 100102
1613= 100112
1713= 101002
1813= 101012
1913= 101102
1a13= 101112
24 - 47
base 13 to binary (base 2)
1b13= 110002
1c13= 110012
2013= 110102
2113= 110112
2213= 111002
2313= 111012
2413= 111102
2513= 111112
2613= 1000002
2713= 1000012
2813= 1000102
2913= 1000112
2a13= 1001002
2b13= 1001012
2c13= 1001102
3013= 1001112
3113= 1010002
3213= 1010012
3313= 1010102
3413= 1010112
3513= 1011002
3613= 1011012
3713= 1011102
3813= 1011112
48 - 71
base 13 to binary (base 2)
3913= 1100002
3a13= 1100012
3b13= 1100102
3c13= 1100112
4013= 1101002
4113= 1101012
4213= 1101102
4313= 1101112
4413= 1110002
4513= 1110012
4613= 1110102
4713= 1110112
4813= 1111002
4913= 1111012
4a13= 1111102
4b13= 1111112
4c13= 10000002
5013= 10000012
5113= 10000102
5213= 10000112
5313= 10001002
5413= 10001012
5513= 10001102

base 13

base 13 is a positional numeral system with thirteen as its base. It uses 13 different digits for representing numbers. The digits for base 13 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, and c.

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.