bookmark

Binary (base 2) to Base 13 Conversion Table

Quick Find Conversion Table

to


0 - 23
binary (base 2) to base 13
02= 013
12= 113
102= 213
112= 313
1002= 413
1012= 513
1102= 613
1112= 713
10002= 813
10012= 913
10102= a13
10112= b13
11002= c13
11012= 1013
11102= 1113
11112= 1213
100002= 1313
100012= 1413
100102= 1513
100112= 1613
101002= 1713
101012= 1813
101102= 1913
101112= 1a13
24 - 47
binary (base 2) to base 13
110002= 1b13
110012= 1c13
110102= 2013
110112= 2113
111002= 2213
111012= 2313
111102= 2413
111112= 2513
1000002= 2613
1000012= 2713
1000102= 2813
1000112= 2913
1001002= 2a13
1001012= 2b13
1001102= 2c13
1001112= 3013
1010002= 3113
1010012= 3213
1010102= 3313
1010112= 3413
1011002= 3513
1011012= 3613
1011102= 3713
1011112= 3813
48 - 71
binary (base 2) to base 13
1100002= 3913
1100012= 3a13
1100102= 3b13
1100112= 3c13
1101002= 4013
1101012= 4113
1101102= 4213
1101112= 4313
1110002= 4413
1110012= 4513
1110102= 4613
1110112= 4713
1111002= 4813
1111012= 4913
1111102= 4a13
1111112= 4b13
10000002= 4c13
10000012= 5013
10000102= 5113
10000112= 5213
10001002= 5313
10001012= 5413
10001102= 5513

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

base 13

base 13 is a positional numeral system with thirteen as its base. It uses 13 different digits for representing numbers. The digits for base 13 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, and c.