bookmark

Base 15 to Binary (base 2) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 15 to binary (base 2)
015= 02
115= 12
215= 102
315= 112
415= 1002
515= 1012
615= 1102
715= 1112
815= 10002
915= 10012
a15= 10102
b15= 10112
c15= 11002
d15= 11012
e15= 11102
1015= 11112
1115= 100002
1215= 100012
1315= 100102
1415= 100112
1515= 101002
1615= 101012
1715= 101102
1815= 101112
24 - 47
base 15 to binary (base 2)
1915= 110002
1a15= 110012
1b15= 110102
1c15= 110112
1d15= 111002
1e15= 111012
2015= 111102
2115= 111112
2215= 1000002
2315= 1000012
2415= 1000102
2515= 1000112
2615= 1001002
2715= 1001012
2815= 1001102
2915= 1001112
2a15= 1010002
2b15= 1010012
2c15= 1010102
2d15= 1010112
2e15= 1011002
3015= 1011012
3115= 1011102
3215= 1011112
48 - 71
base 15 to binary (base 2)
3315= 1100002
3415= 1100012
3515= 1100102
3615= 1100112
3715= 1101002
3815= 1101012
3915= 1101102
3a15= 1101112
3b15= 1110002
3c15= 1110012
3d15= 1110102
3e15= 1110112
4015= 1111002
4115= 1111012
4215= 1111102
4315= 1111112
4415= 10000002
4515= 10000012
4615= 10000102
4715= 10000112
4815= 10001002
4915= 10001012
4a15= 10001102

base 15

base 15 is a positional numeral system with fifteen as its base. It uses 15 different digits for representing numbers. The digits for base 15 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, and e.

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.