bookmark

Binary (base 2) to Base 15 Conversion Table

Quick Find Conversion Table

to


0 - 23
binary (base 2) to base 15
02= 015
12= 115
102= 215
112= 315
1002= 415
1012= 515
1102= 615
1112= 715
10002= 815
10012= 915
10102= a15
10112= b15
11002= c15
11012= d15
11102= e15
11112= 1015
100002= 1115
100012= 1215
100102= 1315
100112= 1415
101002= 1515
101012= 1615
101102= 1715
101112= 1815
24 - 47
binary (base 2) to base 15
110002= 1915
110012= 1a15
110102= 1b15
110112= 1c15
111002= 1d15
111012= 1e15
111102= 2015
111112= 2115
1000002= 2215
1000012= 2315
1000102= 2415
1000112= 2515
1001002= 2615
1001012= 2715
1001102= 2815
1001112= 2915
1010002= 2a15
1010012= 2b15
1010102= 2c15
1010112= 2d15
1011002= 2e15
1011012= 3015
1011102= 3115
1011112= 3215
48 - 71
binary (base 2) to base 15
1100002= 3315
1100012= 3415
1100102= 3515
1100112= 3615
1101002= 3715
1101012= 3815
1101102= 3915
1101112= 3a15
1110002= 3b15
1110012= 3c15
1110102= 3d15
1110112= 3e15
1111002= 4015
1111012= 4115
1111102= 4215
1111112= 4315
10000002= 4415
10000012= 4515
10000102= 4615
10000112= 4715
10001002= 4815
10001012= 4915
10001102= 4a15

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

base 15

base 15 is a positional numeral system with fifteen as its base. It uses 15 different digits for representing numbers. The digits for base 15 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, and e.