bookmark

Base 15 to Octal (base 8) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 15 to octal (base 8)
015= 08
115= 18
215= 28
315= 38
415= 48
515= 58
615= 68
715= 78
815= 108
915= 118
a15= 128
b15= 138
c15= 148
d15= 158
e15= 168
1015= 178
1115= 208
1215= 218
1315= 228
1415= 238
1515= 248
1615= 258
1715= 268
1815= 278
24 - 47
base 15 to octal (base 8)
1915= 308
1a15= 318
1b15= 328
1c15= 338
1d15= 348
1e15= 358
2015= 368
2115= 378
2215= 408
2315= 418
2415= 428
2515= 438
2615= 448
2715= 458
2815= 468
2915= 478
2a15= 508
2b15= 518
2c15= 528
2d15= 538
2e15= 548
3015= 558
3115= 568
3215= 578
48 - 71
base 15 to octal (base 8)
3315= 608
3415= 618
3515= 628
3615= 638
3715= 648
3815= 658
3915= 668
3a15= 678
3b15= 708
3c15= 718
3d15= 728
3e15= 738
4015= 748
4115= 758
4215= 768
4315= 778
4415= 1008
4515= 1018
4615= 1028
4715= 1038
4815= 1048
4915= 1058
4a15= 1068

base 15

base 15 is a positional numeral system with fifteen as its base. It uses 15 different digits for representing numbers. The digits for base 15 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, and e.

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.