bookmark

Octal (base 8) to Base 15 Conversion Table

Quick Find Conversion Table

to


0 - 23
octal (base 8) to base 15
08= 015
18= 115
28= 215
38= 315
48= 415
58= 515
68= 615
78= 715
108= 815
118= 915
128= a15
138= b15
148= c15
158= d15
168= e15
178= 1015
208= 1115
218= 1215
228= 1315
238= 1415
248= 1515
258= 1615
268= 1715
278= 1815
24 - 47
octal (base 8) to base 15
308= 1915
318= 1a15
328= 1b15
338= 1c15
348= 1d15
358= 1e15
368= 2015
378= 2115
408= 2215
418= 2315
428= 2415
438= 2515
448= 2615
458= 2715
468= 2815
478= 2915
508= 2a15
518= 2b15
528= 2c15
538= 2d15
548= 2e15
558= 3015
568= 3115
578= 3215
48 - 71
octal (base 8) to base 15
608= 3315
618= 3415
628= 3515
638= 3615
648= 3715
658= 3815
668= 3915
678= 3a15
708= 3b15
718= 3c15
728= 3d15
738= 3e15
748= 4015
758= 4115
768= 4215
778= 4315
1008= 4415
1018= 4515
1028= 4615
1038= 4715
1048= 4815
1058= 4915
1068= 4a15

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.

base 15

base 15 is a positional numeral system with fifteen as its base. It uses 15 different digits for representing numbers. The digits for base 15 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, and e.