bookmark

Base 21 to Binary (base 2) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 21 to binary (base 2)
021= 02
121= 12
221= 102
321= 112
421= 1002
521= 1012
621= 1102
721= 1112
821= 10002
921= 10012
a21= 10102
b21= 10112
c21= 11002
d21= 11012
e21= 11102
f21= 11112
g21= 100002
h21= 100012
i21= 100102
j21= 100112
k21= 101002
1021= 101012
1121= 101102
1221= 101112
24 - 47
base 21 to binary (base 2)
1321= 110002
1421= 110012
1521= 110102
1621= 110112
1721= 111002
1821= 111012
1921= 111102
1a21= 111112
1b21= 1000002
1c21= 1000012
1d21= 1000102
1e21= 1000112
1f21= 1001002
1g21= 1001012
1h21= 1001102
1i21= 1001112
1j21= 1010002
1k21= 1010012
2021= 1010102
2121= 1010112
2221= 1011002
2321= 1011012
2421= 1011102
2521= 1011112
48 - 71
base 21 to binary (base 2)
2621= 1100002
2721= 1100012
2821= 1100102
2921= 1100112
2a21= 1101002
2b21= 1101012
2c21= 1101102
2d21= 1101112
2e21= 1110002
2f21= 1110012
2g21= 1110102
2h21= 1110112
2i21= 1111002
2j21= 1111012
2k21= 1111102
3021= 1111112
3121= 10000002
3221= 10000012
3321= 10000102
3421= 10000112
3521= 10001002
3621= 10001012
3721= 10001102

base 21

base 21 is a positional numeral system with twenty-one as its base. It uses 21 different digits for representing numbers. The digits for base 21 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, and k.

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.