bookmark

Binary (base 2) to Base 21 Conversion Table

Quick Find Conversion Table

to


0 - 23
binary (base 2) to base 21
02= 021
12= 121
102= 221
112= 321
1002= 421
1012= 521
1102= 621
1112= 721
10002= 821
10012= 921
10102= a21
10112= b21
11002= c21
11012= d21
11102= e21
11112= f21
100002= g21
100012= h21
100102= i21
100112= j21
101002= k21
101012= 1021
101102= 1121
101112= 1221
24 - 47
binary (base 2) to base 21
110002= 1321
110012= 1421
110102= 1521
110112= 1621
111002= 1721
111012= 1821
111102= 1921
111112= 1a21
1000002= 1b21
1000012= 1c21
1000102= 1d21
1000112= 1e21
1001002= 1f21
1001012= 1g21
1001102= 1h21
1001112= 1i21
1010002= 1j21
1010012= 1k21
1010102= 2021
1010112= 2121
1011002= 2221
1011012= 2321
1011102= 2421
1011112= 2521
48 - 71
binary (base 2) to base 21
1100002= 2621
1100012= 2721
1100102= 2821
1100112= 2921
1101002= 2a21
1101012= 2b21
1101102= 2c21
1101112= 2d21
1110002= 2e21
1110012= 2f21
1110102= 2g21
1110112= 2h21
1111002= 2i21
1111012= 2j21
1111102= 2k21
1111112= 3021
10000002= 3121
10000012= 3221
10000102= 3321
10000112= 3421
10001002= 3521
10001012= 3621
10001102= 3721

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

base 21

base 21 is a positional numeral system with twenty-one as its base. It uses 21 different digits for representing numbers. The digits for base 21 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, and k.