bookmark

Base 21 to Octal (base 8) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 21 to octal (base 8)
021= 08
121= 18
221= 28
321= 38
421= 48
521= 58
621= 68
721= 78
821= 108
921= 118
a21= 128
b21= 138
c21= 148
d21= 158
e21= 168
f21= 178
g21= 208
h21= 218
i21= 228
j21= 238
k21= 248
1021= 258
1121= 268
1221= 278
24 - 47
base 21 to octal (base 8)
1321= 308
1421= 318
1521= 328
1621= 338
1721= 348
1821= 358
1921= 368
1a21= 378
1b21= 408
1c21= 418
1d21= 428
1e21= 438
1f21= 448
1g21= 458
1h21= 468
1i21= 478
1j21= 508
1k21= 518
2021= 528
2121= 538
2221= 548
2321= 558
2421= 568
2521= 578
48 - 71
base 21 to octal (base 8)
2621= 608
2721= 618
2821= 628
2921= 638
2a21= 648
2b21= 658
2c21= 668
2d21= 678
2e21= 708
2f21= 718
2g21= 728
2h21= 738
2i21= 748
2j21= 758
2k21= 768
3021= 778
3121= 1008
3221= 1018
3321= 1028
3421= 1038
3521= 1048
3621= 1058
3721= 1068

base 21

base 21 is a positional numeral system with twenty-one as its base. It uses 21 different digits for representing numbers. The digits for base 21 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, and k.

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.