bookmark

Octal (base 8) to Base 21 Conversion Table

Quick Find Conversion Table

to


0 - 23
octal (base 8) to base 21
08= 021
18= 121
28= 221
38= 321
48= 421
58= 521
68= 621
78= 721
108= 821
118= 921
128= a21
138= b21
148= c21
158= d21
168= e21
178= f21
208= g21
218= h21
228= i21
238= j21
248= k21
258= 1021
268= 1121
278= 1221
24 - 47
octal (base 8) to base 21
308= 1321
318= 1421
328= 1521
338= 1621
348= 1721
358= 1821
368= 1921
378= 1a21
408= 1b21
418= 1c21
428= 1d21
438= 1e21
448= 1f21
458= 1g21
468= 1h21
478= 1i21
508= 1j21
518= 1k21
528= 2021
538= 2121
548= 2221
558= 2321
568= 2421
578= 2521
48 - 71
octal (base 8) to base 21
608= 2621
618= 2721
628= 2821
638= 2921
648= 2a21
658= 2b21
668= 2c21
678= 2d21
708= 2e21
718= 2f21
728= 2g21
738= 2h21
748= 2i21
758= 2j21
768= 2k21
778= 3021
1008= 3121
1018= 3221
1028= 3321
1038= 3421
1048= 3521
1058= 3621
1068= 3721

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.

base 21

base 21 is a positional numeral system with twenty-one as its base. It uses 21 different digits for representing numbers. The digits for base 21 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, and k.