bookmark

Base 27 to Binary (base 2) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 27 to binary (base 2)
027= 02
127= 12
227= 102
327= 112
427= 1002
527= 1012
627= 1102
727= 1112
827= 10002
927= 10012
a27= 10102
b27= 10112
c27= 11002
d27= 11012
e27= 11102
f27= 11112
g27= 100002
h27= 100012
i27= 100102
j27= 100112
k27= 101002
l27= 101012
m27= 101102
n27= 101112
24 - 47
base 27 to binary (base 2)
o27= 110002
p27= 110012
q27= 110102
1027= 110112
1127= 111002
1227= 111012
1327= 111102
1427= 111112
1527= 1000002
1627= 1000012
1727= 1000102
1827= 1000112
1927= 1001002
1a27= 1001012
1b27= 1001102
1c27= 1001112
1d27= 1010002
1e27= 1010012
1f27= 1010102
1g27= 1010112
1h27= 1011002
1i27= 1011012
1j27= 1011102
1k27= 1011112
48 - 71
base 27 to binary (base 2)
1l27= 1100002
1m27= 1100012
1n27= 1100102
1o27= 1100112
1p27= 1101002
1q27= 1101012
2027= 1101102
2127= 1101112
2227= 1110002
2327= 1110012
2427= 1110102
2527= 1110112
2627= 1111002
2727= 1111012
2827= 1111102
2927= 1111112
2a27= 10000002
2b27= 10000012
2c27= 10000102
2d27= 10000112
2e27= 10001002
2f27= 10001012
2g27= 10001102

base 27

base 27 is a positional numeral system with twenty-seven as its base. It uses 27 different digits for representing numbers. The digits for base 27 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, and q.

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.