bookmark

Binary (base 2) to Base 27 Conversion Table

Quick Find Conversion Table

to


0 - 23
binary (base 2) to base 27
02= 027
12= 127
102= 227
112= 327
1002= 427
1012= 527
1102= 627
1112= 727
10002= 827
10012= 927
10102= a27
10112= b27
11002= c27
11012= d27
11102= e27
11112= f27
100002= g27
100012= h27
100102= i27
100112= j27
101002= k27
101012= l27
101102= m27
101112= n27
24 - 47
binary (base 2) to base 27
110002= o27
110012= p27
110102= q27
110112= 1027
111002= 1127
111012= 1227
111102= 1327
111112= 1427
1000002= 1527
1000012= 1627
1000102= 1727
1000112= 1827
1001002= 1927
1001012= 1a27
1001102= 1b27
1001112= 1c27
1010002= 1d27
1010012= 1e27
1010102= 1f27
1010112= 1g27
1011002= 1h27
1011012= 1i27
1011102= 1j27
1011112= 1k27
48 - 71
binary (base 2) to base 27
1100002= 1l27
1100012= 1m27
1100102= 1n27
1100112= 1o27
1101002= 1p27
1101012= 1q27
1101102= 2027
1101112= 2127
1110002= 2227
1110012= 2327
1110102= 2427
1110112= 2527
1111002= 2627
1111012= 2727
1111102= 2827
1111112= 2927
10000002= 2a27
10000012= 2b27
10000102= 2c27
10000112= 2d27
10001002= 2e27
10001012= 2f27
10001102= 2g27

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

base 27

base 27 is a positional numeral system with twenty-seven as its base. It uses 27 different digits for representing numbers. The digits for base 27 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, and q.