bookmark

Base 30 to Octal (base 8) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 30 to octal (base 8)
030= 08
130= 18
230= 28
330= 38
430= 48
530= 58
630= 68
730= 78
830= 108
930= 118
a30= 128
b30= 138
c30= 148
d30= 158
e30= 168
f30= 178
g30= 208
h30= 218
i30= 228
j30= 238
k30= 248
l30= 258
m30= 268
n30= 278
24 - 47
base 30 to octal (base 8)
o30= 308
p30= 318
q30= 328
r30= 338
s30= 348
t30= 358
1030= 368
1130= 378
1230= 408
1330= 418
1430= 428
1530= 438
1630= 448
1730= 458
1830= 468
1930= 478
1a30= 508
1b30= 518
1c30= 528
1d30= 538
1e30= 548
1f30= 558
1g30= 568
1h30= 578
48 - 71
base 30 to octal (base 8)
1i30= 608
1j30= 618
1k30= 628
1l30= 638
1m30= 648
1n30= 658
1o30= 668
1p30= 678
1q30= 708
1r30= 718
1s30= 728
1t30= 738
2030= 748
2130= 758
2230= 768
2330= 778
2430= 1008
2530= 1018
2630= 1028
2730= 1038
2830= 1048
2930= 1058
2a30= 1068

base 30

base 30 is a positional numeral system with thirty as its base. It uses 30 different digits for representing numbers. The digits for base 30 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, and t.

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.