bookmark

Octal (base 8) to Base 30 Conversion Table

Quick Find Conversion Table

to


0 - 23
octal (base 8) to base 30
08= 030
18= 130
28= 230
38= 330
48= 430
58= 530
68= 630
78= 730
108= 830
118= 930
128= a30
138= b30
148= c30
158= d30
168= e30
178= f30
208= g30
218= h30
228= i30
238= j30
248= k30
258= l30
268= m30
278= n30
24 - 47
octal (base 8) to base 30
308= o30
318= p30
328= q30
338= r30
348= s30
358= t30
368= 1030
378= 1130
408= 1230
418= 1330
428= 1430
438= 1530
448= 1630
458= 1730
468= 1830
478= 1930
508= 1a30
518= 1b30
528= 1c30
538= 1d30
548= 1e30
558= 1f30
568= 1g30
578= 1h30
48 - 71
octal (base 8) to base 30
608= 1i30
618= 1j30
628= 1k30
638= 1l30
648= 1m30
658= 1n30
668= 1o30
678= 1p30
708= 1q30
718= 1r30
728= 1s30
738= 1t30
748= 2030
758= 2130
768= 2230
778= 2330
1008= 2430
1018= 2530
1028= 2630
1038= 2730
1048= 2830
1058= 2930
1068= 2a30

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.

base 30

base 30 is a positional numeral system with thirty as its base. It uses 30 different digits for representing numbers. The digits for base 30 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, and t.