bookmark

Base 36 to Octal (base 8) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 36 to octal (base 8)
036= 08
136= 18
236= 28
336= 38
436= 48
536= 58
636= 68
736= 78
836= 108
936= 118
a36= 128
b36= 138
c36= 148
d36= 158
e36= 168
f36= 178
g36= 208
h36= 218
i36= 228
j36= 238
k36= 248
l36= 258
m36= 268
n36= 278
24 - 47
base 36 to octal (base 8)
o36= 308
p36= 318
q36= 328
r36= 338
s36= 348
t36= 358
u36= 368
v36= 378
w36= 408
x36= 418
y36= 428
z36= 438
1036= 448
1136= 458
1236= 468
1336= 478
1436= 508
1536= 518
1636= 528
1736= 538
1836= 548
1936= 558
1a36= 568
1b36= 578
48 - 71
base 36 to octal (base 8)
1c36= 608
1d36= 618
1e36= 628
1f36= 638
1g36= 648
1h36= 658
1i36= 668
1j36= 678
1k36= 708
1l36= 718
1m36= 728
1n36= 738
1o36= 748
1p36= 758
1q36= 768
1r36= 778
1s36= 1008
1t36= 1018
1u36= 1028
1v36= 1038
1w36= 1048
1x36= 1058
1y36= 1068

base 36

base 36 is a positional numeral system with thirty-six as its base. It uses 36 different digits for representing numbers. The digits for base 36 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, and z.

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.