bookmark

Octal (base 8) to Base 36 Conversion Table

Quick Find Conversion Table

to


0 - 23
octal (base 8) to base 36
08= 036
18= 136
28= 236
38= 336
48= 436
58= 536
68= 636
78= 736
108= 836
118= 936
128= a36
138= b36
148= c36
158= d36
168= e36
178= f36
208= g36
218= h36
228= i36
238= j36
248= k36
258= l36
268= m36
278= n36
24 - 47
octal (base 8) to base 36
308= o36
318= p36
328= q36
338= r36
348= s36
358= t36
368= u36
378= v36
408= w36
418= x36
428= y36
438= z36
448= 1036
458= 1136
468= 1236
478= 1336
508= 1436
518= 1536
528= 1636
538= 1736
548= 1836
558= 1936
568= 1a36
578= 1b36
48 - 71
octal (base 8) to base 36
608= 1c36
618= 1d36
628= 1e36
638= 1f36
648= 1g36
658= 1h36
668= 1i36
678= 1j36
708= 1k36
718= 1l36
728= 1m36
738= 1n36
748= 1o36
758= 1p36
768= 1q36
778= 1r36
1008= 1s36
1018= 1t36
1028= 1u36
1038= 1v36
1048= 1w36
1058= 1x36
1068= 1y36

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.

base 36

base 36 is a positional numeral system with thirty-six as its base. It uses 36 different digits for representing numbers. The digits for base 36 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, and z.