bookmark

Base 8 to Binary (base 2) Conversion Table

Quick Find Conversion Table

to


0 - 23
base 8 to binary (base 2)
08= 02
18= 12
28= 102
38= 112
48= 1002
58= 1012
68= 1102
78= 1112
108= 10002
118= 10012
128= 10102
138= 10112
148= 11002
158= 11012
168= 11102
178= 11112
208= 100002
218= 100012
228= 100102
238= 100112
248= 101002
258= 101012
268= 101102
278= 101112
24 - 47
base 8 to binary (base 2)
308= 110002
318= 110012
328= 110102
338= 110112
348= 111002
358= 111012
368= 111102
378= 111112
408= 1000002
418= 1000012
428= 1000102
438= 1000112
448= 1001002
458= 1001012
468= 1001102
478= 1001112
508= 1010002
518= 1010012
528= 1010102
538= 1010112
548= 1011002
558= 1011012
568= 1011102
578= 1011112
48 - 71
base 8 to binary (base 2)
608= 1100002
618= 1100012
628= 1100102
638= 1100112
648= 1101002
658= 1101012
668= 1101102
678= 1101112
708= 1110002
718= 1110012
728= 1110102
738= 1110112
748= 1111002
758= 1111012
768= 1111102
778= 1111112
1008= 10000002
1018= 10000012
1028= 10000102
1038= 10000112
1048= 10001002
1058= 10001012
1068= 10001102

base 8

base 8 is a positional numeral system with eight as its base. It uses 8 different digits for representing numbers. The digits for base 8 could be 0, 1, 2, 3, 4, 5, 6, and 7.

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.