bookmark

Binary (base 2) to Base 8 Conversion Table

Quick Find Conversion Table

to


0 - 23
binary (base 2) to base 8
02= 08
12= 18
102= 28
112= 38
1002= 48
1012= 58
1102= 68
1112= 78
10002= 108
10012= 118
10102= 128
10112= 138
11002= 148
11012= 158
11102= 168
11112= 178
100002= 208
100012= 218
100102= 228
100112= 238
101002= 248
101012= 258
101102= 268
101112= 278
24 - 47
binary (base 2) to base 8
110002= 308
110012= 318
110102= 328
110112= 338
111002= 348
111012= 358
111102= 368
111112= 378
1000002= 408
1000012= 418
1000102= 428
1000112= 438
1001002= 448
1001012= 458
1001102= 468
1001112= 478
1010002= 508
1010012= 518
1010102= 528
1010112= 538
1011002= 548
1011012= 558
1011102= 568
1011112= 578
48 - 71
binary (base 2) to base 8
1100002= 608
1100012= 618
1100102= 628
1100112= 638
1101002= 648
1101012= 658
1101102= 668
1101112= 678
1110002= 708
1110012= 718
1110102= 728
1110112= 738
1111002= 748
1111012= 758
1111102= 768
1111112= 778
10000002= 1008
10000012= 1018
10000102= 1028
10000112= 1038
10001002= 1048
10001012= 1058
10001102= 1068

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

base 8

base 8 is a positional numeral system with eight as its base. It uses 8 different digits for representing numbers. The digits for base 8 could be 0, 1, 2, 3, 4, 5, 6, and 7.