bookmark

Octal (base 8) to Quinary (base 5) Conversion Table

Quick Find Conversion Table

to


0 - 23
octal (base 8) to quinary (base 5)
08= 05
18= 15
28= 25
38= 35
48= 45
58= 105
68= 115
78= 125
108= 135
118= 145
128= 205
138= 215
148= 225
158= 235
168= 245
178= 305
208= 315
218= 325
228= 335
238= 345
248= 405
258= 415
268= 425
278= 435
24 - 47
octal (base 8) to quinary (base 5)
308= 445
318= 1005
328= 1015
338= 1025
348= 1035
358= 1045
368= 1105
378= 1115
408= 1125
418= 1135
428= 1145
438= 1205
448= 1215
458= 1225
468= 1235
478= 1245
508= 1305
518= 1315
528= 1325
538= 1335
548= 1345
558= 1405
568= 1415
578= 1425
48 - 71
octal (base 8) to quinary (base 5)
608= 1435
618= 1445
628= 2005
638= 2015
648= 2025
658= 2035
668= 2045
678= 2105
708= 2115
718= 2125
728= 2135
738= 2145
748= 2205
758= 2215
768= 2225
778= 2235
1008= 2245
1018= 2305
1028= 2315
1038= 2325
1048= 2335
1058= 2345
1068= 2405

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.

quinary (base 5)

Quinary (base-5 or pental) is a numeral system with five as the base. A possible origination of a quinary system is that there are five fingers on either hand.