bookmark

Quinary (base 5) to Octal (base 8) Conversion Table

Quick Find Conversion Table

to


0 - 23
quinary (base 5) to octal (base 8)
05= 08
15= 18
25= 28
35= 38
45= 48
105= 58
115= 68
125= 78
135= 108
145= 118
205= 128
215= 138
225= 148
235= 158
245= 168
305= 178
315= 208
325= 218
335= 228
345= 238
405= 248
415= 258
425= 268
435= 278
24 - 47
quinary (base 5) to octal (base 8)
445= 308
1005= 318
1015= 328
1025= 338
1035= 348
1045= 358
1105= 368
1115= 378
1125= 408
1135= 418
1145= 428
1205= 438
1215= 448
1225= 458
1235= 468
1245= 478
1305= 508
1315= 518
1325= 528
1335= 538
1345= 548
1405= 558
1415= 568
1425= 578
48 - 71
quinary (base 5) to octal (base 8)
1435= 608
1445= 618
2005= 628
2015= 638
2025= 648
2035= 658
2045= 668
2105= 678
2115= 708
2125= 718
2135= 728
2145= 738
2205= 748
2215= 758
2225= 768
2235= 778
2245= 1008
2305= 1018
2315= 1028
2325= 1038
2335= 1048
2345= 1058
2405= 1068

quinary (base 5)

Quinary (base-5 or pental) is a numeral system with five as the base. A possible origination of a quinary system is that there are five fingers on either hand.

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.