bookmark

Octal (base 8) to Ternary (base 3) Conversion Table

Quick Find Conversion Table

to


0 - 23
octal (base 8) to ternary (base 3)
08= 03
18= 13
28= 23
38= 103
48= 113
58= 123
68= 203
78= 213
108= 223
118= 1003
128= 1013
138= 1023
148= 1103
158= 1113
168= 1123
178= 1203
208= 1213
218= 1223
228= 2003
238= 2013
248= 2023
258= 2103
268= 2113
278= 2123
24 - 47
octal (base 8) to ternary (base 3)
308= 2203
318= 2213
328= 2223
338= 10003
348= 10013
358= 10023
368= 10103
378= 10113
408= 10123
418= 10203
428= 10213
438= 10223
448= 11003
458= 11013
468= 11023
478= 11103
508= 11113
518= 11123
528= 11203
538= 11213
548= 11223
558= 12003
568= 12013
578= 12023
48 - 71
octal (base 8) to ternary (base 3)
608= 12103
618= 12113
628= 12123
638= 12203
648= 12213
658= 12223
668= 20003
678= 20013
708= 20023
718= 20103
728= 20113
738= 20123
748= 20203
758= 20213
768= 20223
778= 21003
1008= 21013
1018= 21023
1028= 21103
1038= 21113
1048= 21123
1058= 21203
1068= 21213

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.

ternary (base 3)

The ternary numeral system (also called base-3) has three as its base. Analogous to a bit, a ternary digit is a trit (trinary digit). One trit is equivalent to log23 (about 1.58496) bits of information.