bookmark

Ternary (base 3) to Octal (base 8) Conversion Table

Quick Find Conversion Table

to


0 - 23
ternary (base 3) to octal (base 8)
03= 08
13= 18
23= 28
103= 38
113= 48
123= 58
203= 68
213= 78
223= 108
1003= 118
1013= 128
1023= 138
1103= 148
1113= 158
1123= 168
1203= 178
1213= 208
1223= 218
2003= 228
2013= 238
2023= 248
2103= 258
2113= 268
2123= 278
24 - 47
ternary (base 3) to octal (base 8)
2203= 308
2213= 318
2223= 328
10003= 338
10013= 348
10023= 358
10103= 368
10113= 378
10123= 408
10203= 418
10213= 428
10223= 438
11003= 448
11013= 458
11023= 468
11103= 478
11113= 508
11123= 518
11203= 528
11213= 538
11223= 548
12003= 558
12013= 568
12023= 578
48 - 71
ternary (base 3) to octal (base 8)
12103= 608
12113= 618
12123= 628
12203= 638
12213= 648
12223= 658
20003= 668
20013= 678
20023= 708
20103= 718
20113= 728
20123= 738
20203= 748
20213= 758
20223= 768
21003= 778
21013= 1008
21023= 1018
21103= 1028
21113= 1038
21123= 1048
21203= 1058
21213= 1068

ternary (base 3)

The ternary numeral system (also called base-3) has three as its base. Analogous to a bit, a ternary digit is a trit (trinary digit). One trit is equivalent to log23 (about 1.58496) bits of information.

octal (base 8)

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.