bookmark

Ternary (base 3) to Binary (base 2) Conversion Table

Quick Find Conversion Table

to


0 - 23
ternary (base 3) to binary (base 2)
03= 02
13= 12
23= 102
103= 112
113= 1002
123= 1012
203= 1102
213= 1112
223= 10002
1003= 10012
1013= 10102
1023= 10112
1103= 11002
1113= 11012
1123= 11102
1203= 11112
1213= 100002
1223= 100012
2003= 100102
2013= 100112
2023= 101002
2103= 101012
2113= 101102
2123= 101112
24 - 47
ternary (base 3) to binary (base 2)
2203= 110002
2213= 110012
2223= 110102
10003= 110112
10013= 111002
10023= 111012
10103= 111102
10113= 111112
10123= 1000002
10203= 1000012
10213= 1000102
10223= 1000112
11003= 1001002
11013= 1001012
11023= 1001102
11103= 1001112
11113= 1010002
11123= 1010012
11203= 1010102
11213= 1010112
11223= 1011002
12003= 1011012
12013= 1011102
12023= 1011112
48 - 71
ternary (base 3) to binary (base 2)
12103= 1100002
12113= 1100012
12123= 1100102
12203= 1100112
12213= 1101002
12223= 1101012
20003= 1101102
20013= 1101112
20023= 1110002
20103= 1110012
20113= 1110102
20123= 1110112
20203= 1111002
20213= 1111012
20223= 1111102
21003= 1111112
21013= 10000002
21023= 10000012
21103= 10000102
21113= 10000112
21123= 10001002
21203= 10001012
21213= 10001102

ternary (base 3)

The ternary numeral system (also called base-3) has three as its base. Analogous to a bit, a ternary digit is a trit (trinary digit). One trit is equivalent to log23 (about 1.58496) bits of information.

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.