bookmark

Binary (base 2) to Ternary (base 3) Conversion Table

Quick Find Conversion Table

to


0 - 23
binary (base 2) to ternary (base 3)
02= 03
12= 13
102= 23
112= 103
1002= 113
1012= 123
1102= 203
1112= 213
10002= 223
10012= 1003
10102= 1013
10112= 1023
11002= 1103
11012= 1113
11102= 1123
11112= 1203
100002= 1213
100012= 1223
100102= 2003
100112= 2013
101002= 2023
101012= 2103
101102= 2113
101112= 2123
24 - 47
binary (base 2) to ternary (base 3)
110002= 2203
110012= 2213
110102= 2223
110112= 10003
111002= 10013
111012= 10023
111102= 10103
111112= 10113
1000002= 10123
1000012= 10203
1000102= 10213
1000112= 10223
1001002= 11003
1001012= 11013
1001102= 11023
1001112= 11103
1010002= 11113
1010012= 11123
1010102= 11203
1010112= 11213
1011002= 11223
1011012= 12003
1011102= 12013
1011112= 12023
48 - 71
binary (base 2) to ternary (base 3)
1100002= 12103
1100012= 12113
1100102= 12123
1100112= 12203
1101002= 12213
1101012= 12223
1101102= 20003
1101112= 20013
1110002= 20023
1110012= 20103
1110102= 20113
1110112= 20123
1111002= 20203
1111012= 20213
1111102= 20223
1111112= 21003
10000002= 21013
10000012= 21023
10000102= 21103
10000112= 21113
10001002= 21123
10001012= 21203
10001102= 21213

binary (base 2)

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

ternary (base 3)

The ternary numeral system (also called base-3) has three as its base. Analogous to a bit, a ternary digit is a trit (trinary digit). One trit is equivalent to log23 (about 1.58496) bits of information.