bookmark

Binary (base 2) to Ternary (base 3)

Converter Tool

to


 

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.

conversion table

binary (base 2)ternary (base 3)binary (base 2)ternary (base 3)
1= 11011= 102
10= 21100= 110
11= 101101= 111
100= 111110= 112
101= 121111= 120
110= 2010000= 121
111= 2110001= 122
1000= 2210010= 200
1001= 10010011= 201
1010= 10110100= 202

The ternary numeral system (also called base-3) has three as its base. Analogous to a bit, a ternary digit is a trit (trinary digit). One trit is equivalent to log23 (about 1.58496) bits of information.

conversion table

ternary (base 3)binary (base 2)ternary (base 3)binary (base 2)
1≈ 1102≈ 1011
2≈ 10110≈ 1100
10≈ 11111≈ 1101
11≈ 100112≈ 1110
12≈ 101120≈ 1111
20≈ 110121≈ 10000
21≈ 111122≈ 10001
22≈ 1000200≈ 10010
100≈ 1001201≈ 10011
101≈ 1010202≈ 10100