bookmark

Octal (base 8) to Base 36

Converter Tool

to


 
result
zik0zk36 = 100000000000000000000000000000002

The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the right). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: (00)1 001 010, corresponding the octal digits 1 1 2, yielding the octal representation 112.

conversion table

octal (base 8)base 36octal (base 8)base 36
1= 113= b
2= 214= c
3= 315= d
4= 416= e
5= 517= f
6= 620= g
7= 721= h
10= 822= i
11= 923= j
12= a24= k
base 36 is a positional numeral system with thirty-six as its base. It uses 36 different digits for representing numbers. The digits for base 36 could be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, and z.

conversion table

base 36octal (base 8)base 36octal (base 8)
1≈ 1b≈ 13
2≈ 2c≈ 14
3≈ 3d≈ 15
4≈ 4e≈ 16
5≈ 5f≈ 17
6≈ 6g≈ 20
7≈ 7h≈ 21
8≈ 10i≈ 22
9≈ 11j≈ 23
a≈ 12k≈ 24